Python Data Types
Understanding Data Types in Python
Data types in Python are a fundamental concept that plays a crucial role in defining the nature of variables and how they behave during operations. Python is a dynamically-typed language, which means that the interpreter can determine the type of a variable at runtime. This flexibility allows for more concise and expressive code. Let’s delve into the essential data types in Python.
Numeric Data Types
Integers
int
int
Integers represent whole numbers without any fractional part. They can be positive or negative.
age = 25
population = -1000
age = 25
population = -1000
or you can use the int()
int()
function to convert a string to an integer.
age = int(25)
population = int(-1000)
age = int(25)
population = int(-1000)
Floating-Point Numbers
float
float
Floating-point numbers are used to represent real numbers with a decimal point.
pi = 3.14
temperature = -15.5
pi = 3.14
temperature = -15.5
or you can use the float()
float()
function to convert a string to a floating-point number.
pi = float(3.14)
temperature = float(-15.5)
pi = float(3.14)
temperature = float(-15.5)
Complex Numbers
complex
complex
Complex numbers have both a real and an imaginary part.
z = 3 + 4j
z = 3 + 4j
or you can use the complex()
complex()
function to create a complex number.
z = complex(3, 4)
z = complex(3, 4)
Sequence Types
Strings
str
str
Strings are sequences of characters and are enclosed in single or double quotes.
name = "John"
message = 'Hello, Python!'
name = "John"
message = 'Hello, Python!'
or you can use the str()
str()
function to convert a number to a string.
name = str("John")
message = str('Hello, Python!')
name = str("John")
message = str('Hello, Python!')
Lists
list
list
Lists are ordered, mutable sequences that can contain elements of different data types.
fruits = ['apple', 'banana', 'orange']
mixed_list = [1, 'two', 3.0, [4, 5]]
fruits = ['apple', 'banana', 'orange']
mixed_list = [1, 'two', 3.0, [4, 5]]
or you can use the list()
list()
function to convert a tuple to a list.
fruits = list(('apple', 'banana', 'orange'))
mixed_list = list((1, 'two', 3.0, [4, 5]))
fruits = list(('apple', 'banana', 'orange'))
mixed_list = list((1, 'two', 3.0, [4, 5]))
Tuples
tuple
tuple
Tuples are ordered, immutable sequences. Once created, their elements cannot be changed.
coordinates = (3, 4)
RGB_color = (255, 0, 0)
coordinates = (3, 4)
RGB_color = (255, 0, 0)
or you can use the tuple()
tuple()
function to convert a list to a tuple.
coordinates = tuple([3, 4])
RGB_color = tuple([255, 0, 0])
coordinates = tuple([3, 4])
RGB_color = tuple([255, 0, 0])
Set Types
Sets
set
set
Sets are unordered collections of unique elements.
unique_numbers = {1, 2, 3, 4, 5}
unique_numbers = {1, 2, 3, 4, 5}
or you can use the set()
set()
function to create a set.
unique_numbers = set([1, 2, 3, 4, 5])
unique_numbers = set([1, 2, 3, 4, 5])
Mapping Type
Dictionary
dict
dict
Dictionaries are unordered collections of key-value pairs.
person = {'name': 'Alice', 'age': 30, 'city': 'Wonderland'}
person = {'name': 'Alice', 'age': 30, 'city': 'Wonderland'}
or you can use the dict()
dict()
function to create a dictionary.
person = dict({'name': 'Alice', 'age': 30, 'city': 'Wonderland'})
person = dict({'name': 'Alice', 'age': 30, 'city': 'Wonderland'})
Boolean Type
Boolean
bool
bool
Boolean values represent truth or falsehood and are used in logical operations.
is_raining = True
has_pet = False
is_raining = True
has_pet = False
or you can use the bool()
bool()
function to convert a number to a boolean.
is_raining = bool(1)
has_pet = bool(0)
is_raining = bool(1)
has_pet = bool(0)
Special Types
None Type
NoneType
NoneType
The None
None
type represents the absence of a value or a null value.
result = None
result = None
Type Conversion
Python allows you to convert between different data types using built-in functions like int()
int()
, float()
float()
, str()
str()
, etc.
num_str = "42"
num_int = int(num_str)
num_str = "42"
num_int = int(num_str)
Checking Data Types
You can check the data type of a variable using the type()
type()
function.
age = 25
print(type(age)) # <class 'int'>
age = 25
print(type(age)) # <class 'int'>
Operations on Data Types
Different data types support various operations. For example, you can concatenate strings, perform arithmetic operations on numbers, and use logical operators with booleans.
greeting = "Hello, "
name = "Alice"
full_greeting = greeting + name # Concatenation of strings
greeting = "Hello, "
name = "Alice"
full_greeting = greeting + name # Concatenation of strings
Data Type Table
There are many more data types in Python, but the ones listed above are the most commonly used ones. The following table summarizes the data types in Python.
Data Type | Description | Example |
---|---|---|
int int | Integer | age = 25 age = 25 |
float float | Floating-point number | pi = 3.14 pi = 3.14 |
complex complex | Complex number | z = 3 + 4j z = 3 + 4j |
str str | String | name = "Alice" name = "Alice" |
list list | List | fruits = ['apple', 'banana', 'orange'] fruits = ['apple', 'banana', 'orange'] |
tuple tuple | Tuple | coordinates = (3, 4) coordinates = (3, 4) |
set set | Set | unique_numbers = {1, 2, 3, 4, 5} unique_numbers = {1, 2, 3, 4, 5} |
frozenset frozenset | Frozen set | unique_numbers = frozenset({1, 2, 3, 4, 5}) unique_numbers = frozenset({1, 2, 3, 4, 5}) |
dict dict | Dictionary | person = {'name': 'Alice', 'age': 30, 'city': 'Wonderland'} person = {'name': 'Alice', 'age': 30, 'city': 'Wonderland'} |
bool bool | Boolean | is_raining = True is_raining = True |
NoneType NoneType | None | result = None result = None |
range range | Range | numbers = range(1, 10) numbers = range(1, 10) |
bytes bytes | Bytes | data = b'Hello, Python!' data = b'Hello, Python!' |
bytearray bytearray | Byte array | data = bytearray(10) data = bytearray(10) |
memoryview memoryview | Memory view | data = memoryview(bytes(10)) data = memoryview(bytes(10)) |
Conclusion
Understanding Python’s data types is fundamental to writing effective and efficient code. Python’s flexibility in handling various data types makes it suitable for a wide range of applications, from simple scripts to complex data analysis and machine learning tasks. As you continue your journey in Python programming, a solid grasp of data types will empower you to manipulate and process data effectively.
Explore more Python concepts and practical examples in our tutorials on Python Central Hub!
Was this page helpful?
Let us know how we did