AI-based News Summarizer
Abstract
AI-based News Summarizer is a Python project that uses NLP to generate concise summaries of news articles. The application features text extraction, summarization algorithms, and a CLI interface, demonstrating best practices in text processing and summarization.
Prerequisites
- Python 3.8 or above
- A code editor or IDE
- Basic understanding of NLP and text summarization
- Required libraries:
nltk
nltk
,sumy
sumy
,requests
requests
Before you Start
Install Python and the required libraries:
Install dependencies
pip install nltk sumy requests
Install dependencies
pip install nltk sumy requests
Getting Started
Create a Project
- Create a folder named
ai-based-news-summarizer
ai-based-news-summarizer
. - Open the folder in your code editor or IDE.
- Create a file named
ai_based_news_summarizer.py
ai_based_news_summarizer.py
. - Copy the code below into your file.
Write the Code
⚙️ AI-based News Summarizer
AI-based News Summarizer
"""
AI-based News Summarizer
Features:
- News summarization using NLP
- Keyword extraction
- Web interface (Flask)
- Modular design
- Error handling
"""
from flask import Flask, request, render_template_string
import sys
import re
from collections import Counter
try:
from gensim.summarization import summarize
except ImportError:
summarize = None
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def index():
summary = ''
keywords = []
if request.method == 'POST':
text = request.form['text']
if summarize:
summary = summarize(text)
else:
summary = '\n'.join(text.split('.')[:3])
words = re.findall(r'\w+', text.lower())
freq = Counter(words)
keywords = [w for w, c in freq.most_common(10)]
return render_template_string('''<form method="post"><textarea name="text" rows="10" cols="80"></textarea><br><input type="submit" value="Summarize"></form><h2>Summary</h2><pre>{{summary}}</pre><h2>Keywords</h2><pre>{{keywords}}</pre>''', summary=summary, keywords=', '.join(keywords))
if __name__ == '__main__':
try:
app.run(debug=True)
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
AI-based News Summarizer
"""
AI-based News Summarizer
Features:
- News summarization using NLP
- Keyword extraction
- Web interface (Flask)
- Modular design
- Error handling
"""
from flask import Flask, request, render_template_string
import sys
import re
from collections import Counter
try:
from gensim.summarization import summarize
except ImportError:
summarize = None
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def index():
summary = ''
keywords = []
if request.method == 'POST':
text = request.form['text']
if summarize:
summary = summarize(text)
else:
summary = '\n'.join(text.split('.')[:3])
words = re.findall(r'\w+', text.lower())
freq = Counter(words)
keywords = [w for w, c in freq.most_common(10)]
return render_template_string('''<form method="post"><textarea name="text" rows="10" cols="80"></textarea><br><input type="submit" value="Summarize"></form><h2>Summary</h2><pre>{{summary}}</pre><h2>Keywords</h2><pre>{{keywords}}</pre>''', summary=summary, keywords=', '.join(keywords))
if __name__ == '__main__':
try:
app.run(debug=True)
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
Example Usage
Run the news summarizer
python ai_based_news_summarizer.py
Run the news summarizer
python ai_based_news_summarizer.py
Explanation
Key Features
- Text Extraction: Fetches and processes news articles.
- Summarization Algorithms: Uses NLP for extractive summarization.
- Error Handling: Validates inputs and manages exceptions.
- CLI Interface: Interactive command-line usage.
Code Breakdown
- Import Libraries and Fetch Article
ai_based_news_summarizer.py
import requests
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer
import nltk
ai_based_news_summarizer.py
import requests
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer
import nltk
- Fetch and Summarize Article
ai_based_news_summarizer.py
def fetch_article(url):
response = requests.get(url)
return response.text
def summarize_text(text, sentences_count=5):
parser = PlaintextParser.from_string(text, Tokenizer('english'))
summarizer = LsaSummarizer()
summary = summarizer(parser.document, sentences_count)
return ' '.join(str(sentence) for sentence in summary)
ai_based_news_summarizer.py
def fetch_article(url):
response = requests.get(url)
return response.text
def summarize_text(text, sentences_count=5):
parser = PlaintextParser.from_string(text, Tokenizer('english'))
summarizer = LsaSummarizer()
summary = summarizer(parser.document, sentences_count)
return ' '.join(str(sentence) for sentence in summary)
- CLI Interface and Error Handling
ai_based_news_summarizer.py
def main():
print("AI-based News Summarizer")
while True:
cmd = input('> ')
if cmd == 'summarize':
url = input("News article URL: ")
try:
text = fetch_article(url)
summary = summarize_text(text)
print(f"Summary: {summary}")
except Exception as e:
print(f"Error: {e}")
elif cmd == 'exit':
break
else:
print("Unknown command. Type 'summarize' or 'exit'.")
if __name__ == "__main__":
main()
ai_based_news_summarizer.py
def main():
print("AI-based News Summarizer")
while True:
cmd = input('> ')
if cmd == 'summarize':
url = input("News article URL: ")
try:
text = fetch_article(url)
summary = summarize_text(text)
print(f"Summary: {summary}")
except Exception as e:
print(f"Error: {e}")
elif cmd == 'exit':
break
else:
print("Unknown command. Type 'summarize' or 'exit'.")
if __name__ == "__main__":
main()
Features
- NLP-Based Summarization: High-accuracy news summaries
- Modular Design: Separate functions for fetching and summarizing
- Error Handling: Manages invalid inputs and exceptions
- Production-Ready: Scalable and maintainable code
Next Steps
Enhance the project by:
- Supporting batch summarization
- Creating a GUI with Tkinter or a web app with Flask
- Adding support for more summarization algorithms
- Unit testing for reliability
Educational Value
This project teaches:
- NLP Fundamentals: Text extraction and summarization
- Software Design: Modular, maintainable code
- Error Handling: Writing robust Python code
Real-World Applications
- News Aggregators
- Content Management
- Educational Tools
Conclusion
AI-based News Summarizer demonstrates how to build a scalable and accurate news summarization tool using Python. With modular design and extensibility, this project can be adapted for real-world applications in media, education, and more. For more advanced projects, visit Python Central Hub.
Was this page helpful?
Let us know how we did