AI-powered Customer Support Chatbot
Abstract
AI-powered Customer Support Chatbot is a Python project that uses AI to provide automated customer support. The application features intent recognition, context management, and a CLI interface, demonstrating NLP and dialogue management techniques.
Prerequisites
- Python 3.8 or above
- A code editor or IDE
- Basic understanding of NLP and chatbot design
- Required libraries:
nltk
nltk
,scikit-learn
scikit-learn
Before you Start
Install Python and the required libraries:
Install dependencies
pip install nltk scikit-learn
Install dependencies
pip install nltk scikit-learn
Getting Started
Create a Project
- Create a folder named
ai-powered-customer-support-chatbot
ai-powered-customer-support-chatbot
. - Open the folder in your code editor or IDE.
- Create a file named
ai_powered_customer_support_chatbot.py
ai_powered_customer_support_chatbot.py
. - Copy the code below into your file.
Write the Code
⚙️ AI-powered Customer Support Chatbot
AI-powered Customer Support Chatbot
"""
AI-powered Customer Support Chatbot
Features:
- NLP-based chatbot
- Intent recognition
- Modular design
- CLI interface
- Error handling
"""
import sys
try:
import nltk
from nltk.chat.util import Chat, reflections
except ImportError:
nltk = None
Chat = None
reflections = None
class CustomerSupportChatbot:
def __init__(self):
self.pairs = [
[r"(hi|hello|hey)", ["Hello! How can I help you today?"]],
[r"(problem|issue)", ["Can you describe your problem in detail?"]],
[r"(refund)", ["Refunds are processed within 5 business days."]],
[r"(bye|exit)", ["Goodbye! Have a nice day."]],
]
self.chat = Chat(self.pairs, reflections) if Chat else None
def respond(self, text):
if self.chat:
return self.chat.respond(text)
return "Chatbot library not available."
class CLI:
@staticmethod
def run():
print("AI-powered Customer Support Chatbot")
bot = CustomerSupportChatbot()
while True:
cmd = input('> ')
if cmd == 'exit':
print("Goodbye!")
break
response = bot.respond(cmd)
print(response)
if __name__ == "__main__":
try:
CLI.run()
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
AI-powered Customer Support Chatbot
"""
AI-powered Customer Support Chatbot
Features:
- NLP-based chatbot
- Intent recognition
- Modular design
- CLI interface
- Error handling
"""
import sys
try:
import nltk
from nltk.chat.util import Chat, reflections
except ImportError:
nltk = None
Chat = None
reflections = None
class CustomerSupportChatbot:
def __init__(self):
self.pairs = [
[r"(hi|hello|hey)", ["Hello! How can I help you today?"]],
[r"(problem|issue)", ["Can you describe your problem in detail?"]],
[r"(refund)", ["Refunds are processed within 5 business days."]],
[r"(bye|exit)", ["Goodbye! Have a nice day."]],
]
self.chat = Chat(self.pairs, reflections) if Chat else None
def respond(self, text):
if self.chat:
return self.chat.respond(text)
return "Chatbot library not available."
class CLI:
@staticmethod
def run():
print("AI-powered Customer Support Chatbot")
bot = CustomerSupportChatbot()
while True:
cmd = input('> ')
if cmd == 'exit':
print("Goodbye!")
break
response = bot.respond(cmd)
print(response)
if __name__ == "__main__":
try:
CLI.run()
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
Example Usage
Run customer support chatbot
python ai_powered_customer_support_chatbot.py
Run customer support chatbot
python ai_powered_customer_support_chatbot.py
Explanation
Key Features
- Intent Recognition: Classifies user queries using NLP.
- Context Management: Tracks conversation state.
- Dialogue Management: Provides relevant responses.
- Error Handling: Validates inputs and manages exceptions.
- CLI Interface: Interactive command-line usage.
Code Breakdown
- Import Libraries and Define Intents
ai_powered_customer_support_chatbot.py
import nltk
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
nltk.download('punkt')
ai_powered_customer_support_chatbot.py
import nltk
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
nltk.download('punkt')
- Intent Classifier Setup
ai_powered_customer_support_chatbot.py
intents = {
'greet': ['hello', 'hi', 'hey'],
'problem': ['problem', 'issue', 'error'],
'refund': ['refund', 'money back'],
'bye': ['bye', 'goodbye'],
}
vectorizer = CountVectorizer()
X = []
y = []
for intent, examples in intents.items():
X.extend(examples)
y.extend([intent] * len(examples))
X_vec = vectorizer.fit_transform(X)
clf = MultinomialNB()
clf.fit(X_vec, y)
ai_powered_customer_support_chatbot.py
intents = {
'greet': ['hello', 'hi', 'hey'],
'problem': ['problem', 'issue', 'error'],
'refund': ['refund', 'money back'],
'bye': ['bye', 'goodbye'],
}
vectorizer = CountVectorizer()
X = []
y = []
for intent, examples in intents.items():
X.extend(examples)
y.extend([intent] * len(examples))
X_vec = vectorizer.fit_transform(X)
clf = MultinomialNB()
clf.fit(X_vec, y)
- Context Management and Response Logic
ai_powered_customer_support_chatbot.py
class Chatbot:
def __init__(self):
self.context = {}
def get_intent(self, text):
vec = vectorizer.transform([text])
return clf.predict(vec)[0]
def respond(self, text):
intent = self.get_intent(text)
if intent == 'greet':
return "Hello! How can I help you?"
elif intent == 'problem':
return "Can you describe your problem in detail?"
elif intent == 'refund':
return "Refunds are processed within 5 business days."
elif intent == 'bye':
return "Goodbye! Have a nice day."
else:
return "Sorry, I didn't understand."
ai_powered_customer_support_chatbot.py
class Chatbot:
def __init__(self):
self.context = {}
def get_intent(self, text):
vec = vectorizer.transform([text])
return clf.predict(vec)[0]
def respond(self, text):
intent = self.get_intent(text)
if intent == 'greet':
return "Hello! How can I help you?"
elif intent == 'problem':
return "Can you describe your problem in detail?"
elif intent == 'refund':
return "Refunds are processed within 5 business days."
elif intent == 'bye':
return "Goodbye! Have a nice day."
else:
return "Sorry, I didn't understand."
- CLI Interface and Error Handling
ai_powered_customer_support_chatbot.py
def main():
bot = Chatbot()
print("AI-powered Customer Support Chatbot")
while True:
try:
user_input = input('You: ')
if user_input.lower() in ['exit', 'quit']:
print("Bot: Goodbye!")
break
response = bot.respond(user_input)
print(f"Bot: {response}")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
main()
ai_powered_customer_support_chatbot.py
def main():
bot = Chatbot()
print("AI-powered Customer Support Chatbot")
while True:
try:
user_input = input('You: ')
if user_input.lower() in ['exit', 'quit']:
print("Bot: Goodbye!")
break
response = bot.respond(user_input)
print(f"Bot: {response}")
except Exception as e:
print(f"Error: {e}")
if __name__ == "__main__":
main()
Features
- AI-Based Customer Support: Automated responses and intent recognition
- Context Management: Tracks conversation state
- Error Handling: Manages invalid inputs and exceptions
- Production-Ready: Scalable and maintainable code
Next Steps
Enhance the project by:
- Supporting more intents and responses
- Creating a GUI with Tkinter or a web app with Flask
- Integrating with external APIs
- Unit testing for reliability
Educational Value
This project teaches:
- NLP Fundamentals: Intent recognition and dialogue management
- Software Design: Modular, maintainable code
- Error Handling: Writing robust Python code
Real-World Applications
- Customer Support Bots
- Virtual Assistants
- Automated Order Systems
- Educational Tools
Conclusion
AI-powered Customer Support Chatbot demonstrates how to build a scalable and accurate customer support tool using Python. With modular design and extensibility, this project can be adapted for real-world applications in support, automation, and more. For more advanced projects, visit Python Central Hub.
Was this page helpful?
Let us know how we did