Customer Segmentation with ML
Abstract
Customer Segmentation with ML is a Python project that uses machine learning to segment customers. The application features clustering, visualization, and a CLI interface, demonstrating best practices in data science and marketing analytics.
Prerequisites
- Python 3.8 or above
- A code editor or IDE
- Basic understanding of machine learning and clustering
- Required libraries:
pandas
pandas
,scikit-learn
scikit-learn
,matplotlib
matplotlib
Before you Start
Install Python and the required libraries:
Install dependencies
pip install pandas scikit-learn matplotlib
Install dependencies
pip install pandas scikit-learn matplotlib
Getting Started
Create a Project
- Create a folder named
customer-segmentation-ml
customer-segmentation-ml
. - Open the folder in your code editor or IDE.
- Create a file named
customer_segmentation_ml.py
customer_segmentation_ml.py
. - Copy the code below into your file.
Write the Code
⚙️ Customer Segmentation with ML
Customer Segmentation with ML
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
class CustomerSegmentationML:
def __init__(self, n_clusters=3):
self.n_clusters = n_clusters
self.model = KMeans(n_clusters=n_clusters)
def fit(self, data):
self.model.fit(data)
print(f"Model fitted with {self.n_clusters} clusters.")
def predict(self, data):
return self.model.predict(data)
def plot_clusters(self, data):
labels = self.model.predict(data)
plt.scatter(data[:,0], data[:,1], c=labels)
plt.title('Customer Segmentation')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
if __name__ == "__main__":
print("Customer Segmentation ML Demo")
# Example data
import numpy as np
data = np.random.rand(100, 2)
segmenter = CustomerSegmentationML(n_clusters=3)
segmenter.fit(data)
segmenter.plot_clusters(data)
Customer Segmentation with ML
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
class CustomerSegmentationML:
def __init__(self, n_clusters=3):
self.n_clusters = n_clusters
self.model = KMeans(n_clusters=n_clusters)
def fit(self, data):
self.model.fit(data)
print(f"Model fitted with {self.n_clusters} clusters.")
def predict(self, data):
return self.model.predict(data)
def plot_clusters(self, data):
labels = self.model.predict(data)
plt.scatter(data[:,0], data[:,1], c=labels)
plt.title('Customer Segmentation')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
if __name__ == "__main__":
print("Customer Segmentation ML Demo")
# Example data
import numpy as np
data = np.random.rand(100, 2)
segmenter = CustomerSegmentationML(n_clusters=3)
segmenter.fit(data)
segmenter.plot_clusters(data)
Example Usage
Run customer segmentation
python customer_segmentation_ml.py
Run customer segmentation
python customer_segmentation_ml.py
Explanation
Key Features
- Clustering: Segments customers using ML algorithms.
- Visualization: Plots customer segments.
- Error Handling: Validates inputs and manages exceptions.
- CLI Interface: Interactive command-line usage.
Code Breakdown
- Import Libraries and Setup Data
customer_segmentation_ml.py
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
customer_segmentation_ml.py
import pandas as pd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
- Clustering and Visualization Functions
customer_segmentation_ml.py
def segment_customers(df):
kmeans = KMeans(n_clusters=3)
df['Segment'] = kmeans.fit_predict(df)
return df
def plot_segments(df):
plt.scatter(df.iloc[:,0], df.iloc[:,1], c=df['Segment'])
plt.show()
customer_segmentation_ml.py
def segment_customers(df):
kmeans = KMeans(n_clusters=3)
df['Segment'] = kmeans.fit_predict(df)
return df
def plot_segments(df):
plt.scatter(df.iloc[:,0], df.iloc[:,1], c=df['Segment'])
plt.show()
- CLI Interface and Error Handling
customer_segmentation_ml.py
def main():
print("Customer Segmentation with ML")
# df = pd.read_csv('customers.csv')
# df = segment_customers(df)
# plot_segments(df)
print("[Demo] Segmentation logic here.")
if __name__ == "__main__":
main()
customer_segmentation_ml.py
def main():
print("Customer Segmentation with ML")
# df = pd.read_csv('customers.csv')
# df = segment_customers(df)
# plot_segments(df)
print("[Demo] Segmentation logic here.")
if __name__ == "__main__":
main()
Features
- Customer Segmentation: Clustering and visualization
- Modular Design: Separate functions for each task
- Error Handling: Manages invalid inputs and exceptions
- Production-Ready: Scalable and maintainable code
Next Steps
Enhance the project by:
- Integrating with real customer datasets
- Supporting advanced clustering algorithms
- Creating a GUI for segmentation
- Adding real-time analytics
- Unit testing for reliability
Educational Value
This project teaches:
- Marketing Analytics: Segmentation and clustering
- Software Design: Modular, maintainable code
- Error Handling: Writing robust Python code
Real-World Applications
- Marketing Platforms
- Customer Analytics
- Business Intelligence
Conclusion
Customer Segmentation with ML demonstrates how to build a scalable and accurate segmentation tool using Python. With modular design and extensibility, this project can be adapted for real-world applications in marketing, analytics, and more. For more advanced projects, visit Python Central Hub.
Was this page helpful?
Let us know how we did