Real-Time Air Quality Monitoring
Abstract
Real-Time Air Quality Monitoring is a Python project that uses sensors and ML to monitor air quality in real-time. The application features data preprocessing, model training, and a CLI interface, demonstrating best practices in environmental analytics and ML.
Prerequisites
- Python 3.8 or above
- A code editor or IDE
- Basic understanding of ML and environmental science
- Required libraries:
pandas
pandas
,scikit-learn
scikit-learn
,matplotlib
matplotlib
,requests
requests
Before you Start
Install Python and the required libraries:
Install dependencies
pip install pandas scikit-learn matplotlib requests
Install dependencies
pip install pandas scikit-learn matplotlib requests
Getting Started
Create a Project
- Create a folder named
real-time-air-quality-monitoring
real-time-air-quality-monitoring
. - Open the folder in your code editor or IDE.
- Create a file named
real_time_air_quality_monitoring.py
real_time_air_quality_monitoring.py
. - Copy the code below into your file.
Write the Code
⚙️ Real-Time Air Quality Monitoring
Real-Time Air Quality Monitoring
import numpy as np
import matplotlib.pyplot as plt
class RealTimeAirQualityMonitoring:
def __init__(self):
pass
def get_air_quality_data(self):
# Simulate real-time air quality data
data = np.random.normal(loc=50, scale=10, size=100)
print(f"Air quality data: {data}")
return data
def plot_data(self, data):
plt.plot(data)
plt.title('Real-Time Air Quality Monitoring')
plt.xlabel('Time')
plt.ylabel('AQI')
plt.show()
def demo(self):
data = self.get_air_quality_data()
self.plot_data(data)
if __name__ == "__main__":
print("Real-Time Air Quality Monitoring Demo")
monitor = RealTimeAirQualityMonitoring()
monitor.demo()
Real-Time Air Quality Monitoring
import numpy as np
import matplotlib.pyplot as plt
class RealTimeAirQualityMonitoring:
def __init__(self):
pass
def get_air_quality_data(self):
# Simulate real-time air quality data
data = np.random.normal(loc=50, scale=10, size=100)
print(f"Air quality data: {data}")
return data
def plot_data(self, data):
plt.plot(data)
plt.title('Real-Time Air Quality Monitoring')
plt.xlabel('Time')
plt.ylabel('AQI')
plt.show()
def demo(self):
data = self.get_air_quality_data()
self.plot_data(data)
if __name__ == "__main__":
print("Real-Time Air Quality Monitoring Demo")
monitor = RealTimeAirQualityMonitoring()
monitor.demo()
Example Usage
Run air quality monitoring
python real_time_air_quality_monitoring.py
Run air quality monitoring
python real_time_air_quality_monitoring.py
Explanation
Key Features
- Air Quality Monitoring: Monitors air quality in real-time using sensors and ML.
- Data Preprocessing: Cleans and prepares air quality data.
- Error Handling: Validates inputs and manages exceptions.
- CLI Interface: Interactive command-line usage.
Code Breakdown
- Import Libraries and Setup Data
real_time_air_quality_monitoring.py
import pandas as pd
import requests
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
real_time_air_quality_monitoring.py
import pandas as pd
import requests
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
- Data Preprocessing and Model Training Functions
real_time_air_quality_monitoring.py
def get_air_quality_data(api_url):
response = requests.get(api_url)
data = response.json()
return pd.DataFrame(data)
def preprocess_data(df):
return df.dropna()
def train_model(X, y):
model = RandomForestRegressor()
model.fit(X, y)
return model
real_time_air_quality_monitoring.py
def get_air_quality_data(api_url):
response = requests.get(api_url)
data = response.json()
return pd.DataFrame(data)
def preprocess_data(df):
return df.dropna()
def train_model(X, y):
model = RandomForestRegressor()
model.fit(X, y)
return model
- CLI Interface and Error Handling
real_time_air_quality_monitoring.py
def main():
print("Real-Time Air Quality Monitoring")
# api_url = 'https://api.airquality.com/v1/data'
# df = get_air_quality_data(api_url)
# X, y = df.drop('aqi', axis=1), df['aqi']
# model = train_model(X, y)
print("[Demo] Monitoring logic here.")
if __name__ == "__main__":
main()
real_time_air_quality_monitoring.py
def main():
print("Real-Time Air Quality Monitoring")
# api_url = 'https://api.airquality.com/v1/data'
# df = get_air_quality_data(api_url)
# X, y = df.drop('aqi', axis=1), df['aqi']
# model = train_model(X, y)
print("[Demo] Monitoring logic here.")
if __name__ == "__main__":
main()
Features
- Air Quality Monitoring: Real-time data preprocessing and monitoring
- Modular Design: Separate functions for each task
- Error Handling: Manages invalid inputs and exceptions
- Production-Ready: Scalable and maintainable code
Next Steps
Enhance the project by:
- Integrating with more air quality APIs
- Supporting advanced ML models
- Creating a GUI for monitoring
- Adding real-time analytics
- Unit testing for reliability
Educational Value
This project teaches:
- Environmental Analytics: Real-time monitoring and ML
- Software Design: Modular, maintainable code
- Error Handling: Writing robust Python code
Real-World Applications
- Environmental Platforms
- Analytics Tools
- Monitoring Systems
Conclusion
Real-Time Air Quality Monitoring demonstrates how to build a scalable and accurate air quality monitoring tool using Python. With modular design and extensibility, this project can be adapted for real-world applications in environmental analytics, monitoring, and more. For more advanced projects, visit Python Central Hub.
Was this page helpful?
Let us know how we did